MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. EN 1.4371 Stainless Steel

Both ASTM A387 grade 91 class 2 and EN 1.4371 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is EN 1.4371 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
220 to 230
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
45 to 51
Fatigue Strength, MPa 330
290 to 340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
77
Shear Strength, MPa 420
520 to 540
Tensile Strength: Ultimate (UTS), MPa 670
740 to 750
Tensile Strength: Yield (Proof), MPa 470
320 to 340

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Mechanical, °C 600
880
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 37
38
Embodied Water, L/kg 88
140

Common Calculations

PREN (Pitting Resistance) 13
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
270 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 580
250 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
27
Strength to Weight: Bending, points 22
24
Thermal Diffusivity, mm2/s 6.9
4.0
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.030
Chromium (Cr), % 8.0 to 9.5
16 to 17.5
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 87.3 to 90.3
66.7 to 74.4
Manganese (Mn), % 0.3 to 0.6
6.0 to 8.0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
3.5 to 5.5
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0.15 to 0.25
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0