MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. EN 1.6570 Steel

Both ASTM A387 grade 91 class 2 and EN 1.6570 steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is EN 1.6570 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
270 to 340
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
11 to 17
Fatigue Strength, MPa 330
500 to 660
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 670
910 to 1130
Tensile Strength: Yield (Proof), MPa 470
760 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 600
440
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
3.9
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.7
Embodied Energy, MJ/kg 37
23
Embodied Water, L/kg 88
56

Common Calculations

PREN (Pitting Resistance) 13
2.5
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 580
1520 to 3010
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
32 to 40
Strength to Weight: Bending, points 22
27 to 31
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 19
27 to 33

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0.28 to 0.35
Chromium (Cr), % 8.0 to 9.5
1.0 to 1.4
Iron (Fe), % 87.3 to 90.3
94 to 96.2
Manganese (Mn), % 0.3 to 0.6
0.6 to 1.0
Molybdenum (Mo), % 0.85 to 1.1
0.3 to 0.5
Nickel (Ni), % 0 to 0.4
1.6 to 2.1
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0.2 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0