MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. EN AC-46600 Aluminum

ASTM A387 grade 91 class 2 belongs to the iron alloys classification, while EN AC-46600 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
77
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 20
1.1
Fatigue Strength, MPa 330
75
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 670
180
Tensile Strength: Yield (Proof), MPa 470
110

Thermal Properties

Latent Heat of Fusion, J/g 270
490
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1460
620
Melting Onset (Solidus), °C 1420
560
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 26
130
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
29
Electrical Conductivity: Equal Weight (Specific), % IACS 10
94

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 2.6
7.8
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 88
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 580
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 6.9
51
Thermal Shock Resistance, points 19
8.1

Alloy Composition

Aluminum (Al), % 0 to 0.020
85.6 to 92.4
Carbon (C), % 0.080 to 0.12
0
Chromium (Cr), % 8.0 to 9.5
0
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 87.3 to 90.3
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0.3 to 0.6
0.15 to 0.65
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0 to 0.35
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.2 to 0.5
6.0 to 8.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.010
0 to 0.25
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
0 to 1.0
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.15