MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. SAE-AISI D3 Steel

Both ASTM A387 grade 91 class 2 and SAE-AISI D3 steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is SAE-AISI D3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
9.8 to 15
Fatigue Strength, MPa 330
310 to 940
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
74
Shear Strength, MPa 420
470 to 1220
Tensile Strength: Ultimate (UTS), MPa 670
770 to 2050
Tensile Strength: Yield (Proof), MPa 470
480 to 1550

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
31
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
8.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 37
48
Embodied Water, L/kg 88
100

Common Calculations

PREN (Pitting Resistance) 13
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
97 to 180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
28 to 74
Strength to Weight: Bending, points 22
24 to 47
Thermal Diffusivity, mm2/s 6.9
8.3
Thermal Shock Resistance, points 19
23 to 63

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
2.0 to 2.4
Chromium (Cr), % 8.0 to 9.5
11 to 13.5
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 87.3 to 90.3
80.3 to 87
Manganese (Mn), % 0.3 to 0.6
0 to 0.6
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0 to 0.3
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0.2 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 0
0 to 1.0
Vanadium (V), % 0.18 to 0.25
0 to 1.0
Zirconium (Zr), % 0 to 0.010
0