MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. S31100 Stainless Steel

Both ASTM A387 grade 91 class 2 and S31100 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
270
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
4.5
Fatigue Strength, MPa 330
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
79
Shear Strength, MPa 420
580
Tensile Strength: Ultimate (UTS), MPa 670
1000
Tensile Strength: Yield (Proof), MPa 470
710

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
1100
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
16
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 37
44
Embodied Water, L/kg 88
170

Common Calculations

PREN (Pitting Resistance) 13
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
40
Resilience: Unit (Modulus of Resilience), kJ/m3 580
1240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
36
Strength to Weight: Bending, points 22
29
Thermal Diffusivity, mm2/s 6.9
4.2
Thermal Shock Resistance, points 19
28

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.060
Chromium (Cr), % 8.0 to 9.5
25 to 27
Iron (Fe), % 87.3 to 90.3
63.6 to 69
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
6.0 to 7.0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0 to 0.25
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0