MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. S32654 Stainless Steel

Both ASTM A387 grade 91 class 2 and S32654 stainless steel are iron alloys. They have 52% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
220
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 20
45
Fatigue Strength, MPa 330
450
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
82
Shear Strength, MPa 420
590
Tensile Strength: Ultimate (UTS), MPa 670
850
Tensile Strength: Yield (Proof), MPa 470
490

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Mechanical, °C 600
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 26
11
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
34
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.6
6.4
Embodied Energy, MJ/kg 37
87
Embodied Water, L/kg 88
220

Common Calculations

PREN (Pitting Resistance) 13
57
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
330
Resilience: Unit (Modulus of Resilience), kJ/m3 580
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
29
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 6.9
2.9
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.020
Chromium (Cr), % 8.0 to 9.5
24 to 25
Copper (Cu), % 0
0.3 to 0.6
Iron (Fe), % 87.3 to 90.3
38.3 to 45.3
Manganese (Mn), % 0.3 to 0.6
2.0 to 4.0
Molybdenum (Mo), % 0.85 to 1.1
7.0 to 8.0
Nickel (Ni), % 0 to 0.4
21 to 23
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0.45 to 0.55
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0.2 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.0050
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0