MakeItFrom.com
Menu (ESC)

ASTM A514 Steel vs. CC755S Brass

ASTM A514 steel belongs to the iron alloys classification, while CC755S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A514 steel and the bottom bar is CC755S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240 to 250
110
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 18 to 21
9.5
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 790 to 830
390
Tensile Strength: Yield (Proof), MPa 690 to 770
250

Thermal Properties

Latent Heat of Fusion, J/g 250 to 260
170
Maximum Temperature: Mechanical, °C 400 to 440
120
Melting Completion (Liquidus), °C 1460
820
Melting Onset (Solidus), °C 1420
780
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 37 to 51
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2 to 7.6
27
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3 to 8.8
30

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3 to 3.8
23
Density, g/cm3 7.8 to 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.6 to 1.8
2.7
Embodied Energy, MJ/kg 21 to 25
46
Embodied Water, L/kg 48 to 57
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
33
Resilience: Unit (Modulus of Resilience), kJ/m3 1280 to 1590
290
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 28 to 29
14
Strength to Weight: Bending, points 24 to 25
15
Thermal Diffusivity, mm2/s 10 to 14
38
Thermal Shock Resistance, points 23 to 24
13