MakeItFrom.com
Menu (ESC)

ASTM A588 Steel vs. 4015 Aluminum

ASTM A588 steel belongs to the iron alloys classification, while 4015 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A588 steel and the bottom bar is 4015 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
35 to 70
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 22
1.1 to 23
Fatigue Strength, MPa 270
46 to 71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 350
82 to 120
Tensile Strength: Ultimate (UTS), MPa 550
130 to 220
Tensile Strength: Yield (Proof), MPa 390
50 to 200

Thermal Properties

Latent Heat of Fusion, J/g 250 to 260
420
Maximum Temperature: Mechanical, °C 410
160
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410 to 1420
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 43 to 44
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
41
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3 to 2.5
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.5 to 1.6
8.1
Embodied Energy, MJ/kg 20 to 22
150
Embodied Water, L/kg 50 to 51
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 400
18 to 290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 20
13 to 22
Strength to Weight: Bending, points 19
21 to 30
Thermal Diffusivity, mm2/s 12
66
Thermal Shock Resistance, points 16
5.7 to 9.7