MakeItFrom.com
Menu (ESC)

ASTM A588 Steel vs. C18100 Copper

ASTM A588 steel belongs to the iron alloys classification, while C18100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A588 steel and the bottom bar is C18100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
8.3
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
47
Shear Strength, MPa 350
300
Tensile Strength: Ultimate (UTS), MPa 550
510
Tensile Strength: Yield (Proof), MPa 390
460

Thermal Properties

Latent Heat of Fusion, J/g 250 to 260
210
Maximum Temperature: Mechanical, °C 410
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410 to 1420
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 43 to 44
320
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
80
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
81

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3 to 2.5
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.5 to 1.6
2.7
Embodied Energy, MJ/kg 20 to 22
43
Embodied Water, L/kg 50 to 51
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
40
Resilience: Unit (Modulus of Resilience), kJ/m3 400
900
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
16
Strength to Weight: Bending, points 19
16
Thermal Diffusivity, mm2/s 12
94
Thermal Shock Resistance, points 16
18