MakeItFrom.com
Menu (ESC)

ASTM A588 Steel vs. C43400 Brass

ASTM A588 steel belongs to the iron alloys classification, while C43400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A588 steel and the bottom bar is C43400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
3.0 to 49
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Shear Strength, MPa 350
250 to 390
Tensile Strength: Ultimate (UTS), MPa 550
310 to 690
Tensile Strength: Yield (Proof), MPa 390
110 to 560

Thermal Properties

Latent Heat of Fusion, J/g 250 to 260
190
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1460
1020
Melting Onset (Solidus), °C 1410 to 1420
990
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 43 to 44
140
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
31
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
32

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3 to 2.5
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.5 to 1.6
2.7
Embodied Energy, MJ/kg 20 to 22
44
Embodied Water, L/kg 50 to 51
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
19 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 400
57 to 1420
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
10 to 22
Strength to Weight: Bending, points 19
12 to 20
Thermal Diffusivity, mm2/s 12
41
Thermal Shock Resistance, points 16
11 to 24