MakeItFrom.com
Menu (ESC)

ASTM A588 Steel vs. C82600 Copper

ASTM A588 steel belongs to the iron alloys classification, while C82600 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A588 steel and the bottom bar is C82600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
46
Tensile Strength: Ultimate (UTS), MPa 550
570 to 1140
Tensile Strength: Yield (Proof), MPa 390
320 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 250 to 260
240
Maximum Temperature: Mechanical, °C 410
300
Melting Completion (Liquidus), °C 1460
950
Melting Onset (Solidus), °C 1410 to 1420
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 43 to 44
130
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
19
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
20

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.5 to 1.6
11
Embodied Energy, MJ/kg 20 to 22
180
Embodied Water, L/kg 50 to 51
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 400
430 to 4690
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
18 to 36
Strength to Weight: Bending, points 19
17 to 28
Thermal Diffusivity, mm2/s 12
37
Thermal Shock Resistance, points 16
19 to 39