MakeItFrom.com
Menu (ESC)

ASTM B596 Au-Cu vs. EN 1.8823 Steel

ASTM B596 Au-Cu belongs to the otherwise unclassified metals classification, while EN 1.8823 steel belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM B596 Au-Cu and the bottom bar is EN 1.8823 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.3 to 17
25
Poisson's Ratio 0.41
0.29
Shear Modulus, GPa 36
73
Shear Strength, MPa 280 to 360
340
Tensile Strength: Ultimate (UTS), MPa 450 to 620
530

Thermal Properties

Latent Heat of Fusion, J/g 77
250
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 930
1420
Specific Heat Capacity, J/kg-K 150
470
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
8.6

Otherwise Unclassified Properties

Density, g/cm3 18
7.8

Common Calculations

Stiffness to Weight: Axial, points 3.1
13
Stiffness to Weight: Bending, points 8.5
24
Strength to Weight: Axial, points 6.8 to 9.4
19
Strength to Weight: Bending, points 7.1 to 8.8
19
Thermal Shock Resistance, points 22 to 30
16

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.034
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 9.0 to 11
0 to 0.6
Gold (Au), % 89 to 91
0
Iron (Fe), % 0
95.6 to 99.985
Manganese (Mn), % 0
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.55
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.55
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.12
Residuals, % 0 to 0.4
0