MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. 358.0 Aluminum

ASTM B817 type I belongs to the titanium alloys classification, while 358.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
71
Elongation at Break, % 4.0 to 13
3.5 to 6.0
Fatigue Strength, MPa 360 to 520
100 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 770 to 960
350 to 370
Tensile Strength: Yield (Proof), MPa 700 to 860
290 to 320

Thermal Properties

Latent Heat of Fusion, J/g 410
520
Maximum Temperature: Mechanical, °C 340
170
Melting Completion (Liquidus), °C 1600
600
Melting Onset (Solidus), °C 1550
560
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 7.1
150
Thermal Expansion, µm/m-K 9.6
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
130

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 4.4
2.6
Embodied Carbon, kg CO2/kg material 38
8.7
Embodied Energy, MJ/kg 610
160
Embodied Water, L/kg 200
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
12 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
590 to 710
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
53
Strength to Weight: Axial, points 48 to 60
37 to 39
Strength to Weight: Bending, points 42 to 49
42 to 44
Thermal Diffusivity, mm2/s 2.9
63
Thermal Shock Resistance, points 54 to 68
16 to 17

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
7.6 to 8.6
Sodium (Na), % 0 to 0.2
0
Titanium (Ti), % 87 to 91
0.1 to 0.2
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15