MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. 6013 Aluminum

ASTM B817 type I belongs to the titanium alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Elongation at Break, % 4.0 to 13
3.4 to 22
Fatigue Strength, MPa 360 to 520
98 to 140
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 770 to 960
310 to 410
Tensile Strength: Yield (Proof), MPa 700 to 860
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 340
160
Melting Completion (Liquidus), °C 1600
650
Melting Onset (Solidus), °C 1550
580
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 7.1
150
Thermal Expansion, µm/m-K 9.6
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
120

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
2.8
Embodied Carbon, kg CO2/kg material 38
8.3
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
200 to 900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
49
Strength to Weight: Axial, points 48 to 60
31 to 41
Strength to Weight: Bending, points 42 to 49
37 to 44
Thermal Diffusivity, mm2/s 2.9
60
Thermal Shock Resistance, points 54 to 68
14 to 18

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
94.8 to 97.8
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0.6 to 1.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0.2 to 0.8
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0.6 to 1.0
Sodium (Na), % 0 to 0.2
0
Titanium (Ti), % 87 to 91
0 to 0.1
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15