MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. 6065 Aluminum

ASTM B817 type I belongs to the titanium alloys classification, while 6065 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 4.0 to 13
4.5 to 11
Fatigue Strength, MPa 360 to 520
96 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 770 to 960
310 to 400
Tensile Strength: Yield (Proof), MPa 700 to 860
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 340
180
Melting Completion (Liquidus), °C 1600
640
Melting Onset (Solidus), °C 1550
590
Specific Heat Capacity, J/kg-K 560
890
Thermal Conductivity, W/m-K 7.1
170
Thermal Expansion, µm/m-K 9.6
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
43
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 36
11
Density, g/cm3 4.4
2.8
Embodied Carbon, kg CO2/kg material 38
8.4
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
540 to 1040
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
49
Strength to Weight: Axial, points 48 to 60
31 to 40
Strength to Weight: Bending, points 42 to 49
36 to 43
Thermal Diffusivity, mm2/s 2.9
67
Thermal Shock Resistance, points 54 to 68
14 to 18

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0
0.15 to 0.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0 to 0.15
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0.4 to 0.8
Sodium (Na), % 0 to 0.2
0
Titanium (Ti), % 87 to 91
0 to 0.1
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15