MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. ASTM A182 Grade F122

ASTM B817 type I belongs to the titanium alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.0 to 13
23
Fatigue Strength, MPa 360 to 520
320
Poisson's Ratio 0.32
0.28
Reduction in Area, % 5.0 to 29
45
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 770 to 960
710
Tensile Strength: Yield (Proof), MPa 700 to 860
450

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 340
600
Melting Completion (Liquidus), °C 1600
1490
Melting Onset (Solidus), °C 1550
1440
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
24
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 4.4
8.0
Embodied Carbon, kg CO2/kg material 38
3.0
Embodied Energy, MJ/kg 610
44
Embodied Water, L/kg 200
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
140
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 48 to 60
25
Strength to Weight: Bending, points 42 to 49
22
Thermal Diffusivity, mm2/s 2.9
6.4
Thermal Shock Resistance, points 54 to 68
19

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.1
0.070 to 0.14
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 0
0.3 to 1.7
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
81.3 to 87.7
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0 to 0.040
0.040 to 0.1
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.5
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 87 to 91
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 3.5 to 4.5
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.4
0