MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. ASTM Grade HI Steel

ASTM B817 type I belongs to the titanium alloys classification, while ASTM grade HI steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is ASTM grade HI steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 4.0 to 13
11
Fatigue Strength, MPa 360 to 520
150
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 770 to 960
550
Tensile Strength: Yield (Proof), MPa 700 to 860
270

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1600
1400
Melting Onset (Solidus), °C 1550
1350
Specific Heat Capacity, J/kg-K 560
490
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.6
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
23
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
4.1
Embodied Energy, MJ/kg 610
59
Embodied Water, L/kg 200
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
52
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 48 to 60
20
Strength to Weight: Bending, points 42 to 49
19
Thermal Diffusivity, mm2/s 2.9
3.9
Thermal Shock Resistance, points 54 to 68
12

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0.2 to 0.5
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
26 to 30
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
46.9 to 59.8
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
14 to 18
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 2.0
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0