MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. AWS E90C-K3

ASTM B817 type I belongs to the titanium alloys classification, while AWS E90C-K3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is AWS E90C-K3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.0 to 13
55
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 770 to 960
710
Tensile Strength: Yield (Proof), MPa 700 to 860
600

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Melting Completion (Liquidus), °C 1600
1460
Melting Onset (Solidus), °C 1550
1410
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
48
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
3.4
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.7
Embodied Energy, MJ/kg 610
23
Embodied Water, L/kg 200
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
370
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
980
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 48 to 60
25
Strength to Weight: Bending, points 42 to 49
22
Thermal Diffusivity, mm2/s 2.9
13
Thermal Shock Resistance, points 54 to 68
21

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.15
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0
0 to 0.35
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
92.6 to 98.5
Manganese (Mn), % 0
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0
0.5 to 2.5
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.8
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0 to 0.030
Residuals, % 0
0 to 0.5