MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. EN 1.4482 Stainless Steel

ASTM B817 type I belongs to the titanium alloys classification, while EN 1.4482 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 4.0 to 13
34
Fatigue Strength, MPa 360 to 520
420 to 450
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 770 to 960
770 to 800
Tensile Strength: Yield (Proof), MPa 700 to 860
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
980
Melting Completion (Liquidus), °C 1600
1420
Melting Onset (Solidus), °C 1550
1370
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 4.4
7.7
Embodied Carbon, kg CO2/kg material 38
2.7
Embodied Energy, MJ/kg 610
38
Embodied Water, L/kg 200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
690 to 820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 48 to 60
28 to 29
Strength to Weight: Bending, points 42 to 49
24 to 25
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 54 to 68
21 to 22

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
66.1 to 74.9
Manganese (Mn), % 0
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
1.5 to 3.5
Nitrogen (N), % 0 to 0.040
0.050 to 0.2
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 1.0
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0