MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. EN 1.5535 Steel

ASTM B817 type I belongs to the titanium alloys classification, while EN 1.5535 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is EN 1.5535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.0 to 13
11 to 22
Fatigue Strength, MPa 360 to 520
210 to 320
Poisson's Ratio 0.32
0.29
Reduction in Area, % 5.0 to 29
62 to 72
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 770 to 960
450 to 1490
Tensile Strength: Yield (Proof), MPa 700 to 860
300 to 500

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1600
1460
Melting Onset (Solidus), °C 1550
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
50
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.9
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.4
Embodied Energy, MJ/kg 610
19
Embodied Water, L/kg 200
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
240 to 680
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 48 to 60
16 to 53
Strength to Weight: Bending, points 42 to 49
17 to 37
Thermal Diffusivity, mm2/s 2.9
13
Thermal Shock Resistance, points 54 to 68
13 to 44

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.1
0.2 to 0.25
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
97.6 to 98.9
Manganese (Mn), % 0
0.9 to 1.2
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.3
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0