MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. EN 1.6368 Steel

ASTM B817 type I belongs to the titanium alloys classification, while EN 1.6368 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.0 to 13
18
Fatigue Strength, MPa 360 to 520
310 to 330
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 770 to 960
660 to 690
Tensile Strength: Yield (Proof), MPa 700 to 860
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
410
Melting Completion (Liquidus), °C 1600
1460
Melting Onset (Solidus), °C 1550
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
40
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
3.4
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
1.7
Embodied Energy, MJ/kg 610
22
Embodied Water, L/kg 200
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
580 to 650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 48 to 60
23 to 24
Strength to Weight: Bending, points 42 to 49
21 to 22
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 54 to 68
20

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0.015 to 0.040
Carbon (C), % 0 to 0.1
0 to 0.17
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0.5 to 0.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
95.1 to 97.2
Manganese (Mn), % 0
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0 to 0.040
0 to 0.020
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0.25 to 0.5
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0