MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. EN 2.4856 Nickel

ASTM B817 type I belongs to the titanium alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 4.0 to 13
28
Fatigue Strength, MPa 360 to 520
280
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 770 to 960
880
Tensile Strength: Yield (Proof), MPa 700 to 860
430

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 340
1000
Melting Completion (Liquidus), °C 1600
1480
Melting Onset (Solidus), °C 1550
1430
Specific Heat Capacity, J/kg-K 560
440
Thermal Conductivity, W/m-K 7.1
10
Thermal Expansion, µm/m-K 9.6
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
80
Density, g/cm3 4.4
8.6
Embodied Carbon, kg CO2/kg material 38
14
Embodied Energy, MJ/kg 610
190
Embodied Water, L/kg 200
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
200
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 48 to 60
28
Strength to Weight: Bending, points 42 to 49
24
Thermal Diffusivity, mm2/s 2.9
2.7
Thermal Shock Resistance, points 54 to 68
29

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.4
Carbon (C), % 0 to 0.1
0.030 to 0.1
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 5.0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.8
Niobium (Nb), % 0
3.2 to 4.2
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.5
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87 to 91
0 to 0.4
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0