MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. EN AC-43300 Aluminum

ASTM B817 type I belongs to the titanium alloys classification, while EN AC-43300 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
71
Elongation at Break, % 4.0 to 13
3.4 to 6.7
Fatigue Strength, MPa 360 to 520
76 to 77
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 770 to 960
280 to 290
Tensile Strength: Yield (Proof), MPa 700 to 860
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 410
540
Maximum Temperature: Mechanical, °C 340
170
Melting Completion (Liquidus), °C 1600
600
Melting Onset (Solidus), °C 1550
590
Specific Heat Capacity, J/kg-K 560
910
Thermal Conductivity, W/m-K 7.1
140
Thermal Expansion, µm/m-K 9.6
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
2.5
Embodied Carbon, kg CO2/kg material 38
7.9
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
300 to 370
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
54
Strength to Weight: Axial, points 48 to 60
31 to 32
Strength to Weight: Bending, points 42 to 49
37 to 38
Thermal Diffusivity, mm2/s 2.9
59
Thermal Shock Resistance, points 54 to 68
13 to 14

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
88.9 to 90.8
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0
0 to 0.050
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
9.0 to 10
Sodium (Na), % 0 to 0.2
0
Titanium (Ti), % 87 to 91
0 to 0.15
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1