MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. CC334G Bronze

ASTM B817 type I belongs to the titanium alloys classification, while CC334G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 4.0 to 13
5.6
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
45
Tensile Strength: Ultimate (UTS), MPa 770 to 960
810
Tensile Strength: Yield (Proof), MPa 700 to 860
410

Thermal Properties

Latent Heat of Fusion, J/g 410
240
Maximum Temperature: Mechanical, °C 340
240
Melting Completion (Liquidus), °C 1600
1080
Melting Onset (Solidus), °C 1550
1020
Specific Heat Capacity, J/kg-K 560
450
Thermal Conductivity, W/m-K 7.1
41
Thermal Expansion, µm/m-K 9.6
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 4.4
8.2
Embodied Carbon, kg CO2/kg material 38
3.6
Embodied Energy, MJ/kg 610
59
Embodied Water, L/kg 200
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
38
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
710
Stiffness to Weight: Axial, points 13
8.1
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 48 to 60
28
Strength to Weight: Bending, points 42 to 49
24
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 54 to 68
28

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
10 to 12
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0
72 to 84.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 2.5
Nickel (Ni), % 0
4.0 to 7.5
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0 to 0.1
Sodium (Na), % 0 to 0.2
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0