MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. Nickel 600

ASTM B817 type I belongs to the titanium alloys classification, while nickel 600 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is nickel 600.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.0 to 13
3.4 to 35
Fatigue Strength, MPa 360 to 520
220 to 300
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 770 to 960
650 to 990
Tensile Strength: Yield (Proof), MPa 700 to 860
270 to 760

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1600
1410
Melting Onset (Solidus), °C 1550
1350
Specific Heat Capacity, J/kg-K 560
460
Thermal Conductivity, W/m-K 7.1
14
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
55
Density, g/cm3 4.4
8.5
Embodied Carbon, kg CO2/kg material 38
9.0
Embodied Energy, MJ/kg 610
130
Embodied Water, L/kg 200
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
31 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
190 to 1490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 48 to 60
21 to 32
Strength to Weight: Bending, points 42 to 49
20 to 26
Thermal Diffusivity, mm2/s 2.9
3.6
Thermal Shock Resistance, points 54 to 68
19 to 29

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.15
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
6.0 to 10
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
72 to 80
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0 to 0.5
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0