MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. C28000 Muntz Metal

ASTM B817 type I belongs to the titanium alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 4.0 to 13
10 to 45
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 770 to 960
330 to 610
Tensile Strength: Yield (Proof), MPa 700 to 860
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 340
120
Melting Completion (Liquidus), °C 1600
900
Melting Onset (Solidus), °C 1550
900
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.1
120
Thermal Expansion, µm/m-K 9.6
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
31

Otherwise Unclassified Properties

Base Metal Price, % relative 36
23
Density, g/cm3 4.4
8.0
Embodied Carbon, kg CO2/kg material 38
2.7
Embodied Energy, MJ/kg 610
46
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
110 to 670
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 48 to 60
11 to 21
Strength to Weight: Bending, points 42 to 49
13 to 20
Thermal Diffusivity, mm2/s 2.9
40
Thermal Shock Resistance, points 54 to 68
11 to 20

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0
59 to 63
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0
Sodium (Na), % 0 to 0.2
0
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
36.3 to 41
Residuals, % 0
0 to 0.3