MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. C51900 Bronze

ASTM B817 type I belongs to the titanium alloys classification, while C51900 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is C51900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 4.0 to 13
14 to 29
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 770 to 960
380 to 620
Tensile Strength: Yield (Proof), MPa 700 to 860
390 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 340
180
Melting Completion (Liquidus), °C 1600
1040
Melting Onset (Solidus), °C 1550
930
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
66
Thermal Expansion, µm/m-K 9.6
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
14

Otherwise Unclassified Properties

Base Metal Price, % relative 36
33
Density, g/cm3 4.4
8.8
Embodied Carbon, kg CO2/kg material 38
3.2
Embodied Energy, MJ/kg 610
51
Embodied Water, L/kg 200
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
55 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
680 to 1450
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 48 to 60
12 to 19
Strength to Weight: Bending, points 42 to 49
13 to 18
Thermal Diffusivity, mm2/s 2.9
20
Thermal Shock Resistance, points 54 to 68
14 to 22

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0
91.7 to 95
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 0 to 0.1
0
Sodium (Na), % 0 to 0.2
0
Tin (Sn), % 0
5.0 to 7.0
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5