MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. C84100 Brass

ASTM B817 type I belongs to the titanium alloys classification, while C84100 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 4.0 to 13
13
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
39
Tensile Strength: Ultimate (UTS), MPa 770 to 960
230
Tensile Strength: Yield (Proof), MPa 700 to 860
81

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 340
160
Melting Completion (Liquidus), °C 1600
1000
Melting Onset (Solidus), °C 1550
810
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
110
Thermal Expansion, µm/m-K 9.6
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
25

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 4.4
8.5
Embodied Carbon, kg CO2/kg material 38
2.9
Embodied Energy, MJ/kg 610
48
Embodied Water, L/kg 200
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
24
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
30
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 48 to 60
7.4
Strength to Weight: Bending, points 42 to 49
9.7
Thermal Diffusivity, mm2/s 2.9
33
Thermal Shock Resistance, points 54 to 68
7.8

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0
78 to 85
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.010
Sodium (Na), % 0 to 0.2
0
Tin (Sn), % 0
1.5 to 4.5
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
12 to 20
Residuals, % 0
0 to 0.5