MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. N10003 Nickel

ASTM B817 type I belongs to the titanium alloys classification, while N10003 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 4.0 to 13
42
Fatigue Strength, MPa 360 to 520
260
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 770 to 960
780
Tensile Strength: Yield (Proof), MPa 700 to 860
320

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 340
930
Melting Completion (Liquidus), °C 1600
1520
Melting Onset (Solidus), °C 1550
1460
Specific Heat Capacity, J/kg-K 560
420
Thermal Conductivity, W/m-K 7.1
12
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
70
Density, g/cm3 4.4
8.9
Embodied Carbon, kg CO2/kg material 38
13
Embodied Energy, MJ/kg 610
180
Embodied Water, L/kg 200
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
260
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 48 to 60
24
Strength to Weight: Bending, points 42 to 49
21
Thermal Diffusivity, mm2/s 2.9
3.1
Thermal Shock Resistance, points 54 to 68
21

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.1
0.040 to 0.080
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.35
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 5.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
15 to 18
Nickel (Ni), % 0
64.8 to 79
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.1
0 to 1.0
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 87 to 91
0
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 3.5 to 4.5
0 to 0.5
Residuals, % 0 to 0.4
0