MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. ZE41A Magnesium

ASTM B817 type I belongs to the titanium alloys classification, while ZE41A magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is ZE41A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
45
Elongation at Break, % 4.0 to 13
3.3
Fatigue Strength, MPa 360 to 520
98
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
18
Tensile Strength: Ultimate (UTS), MPa 770 to 960
210
Tensile Strength: Yield (Proof), MPa 700 to 860
140

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 340
150
Melting Completion (Liquidus), °C 1600
640
Melting Onset (Solidus), °C 1550
540
Specific Heat Capacity, J/kg-K 560
970
Thermal Conductivity, W/m-K 7.1
110
Thermal Expansion, µm/m-K 9.6
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
130

Otherwise Unclassified Properties

Base Metal Price, % relative 36
18
Density, g/cm3 4.4
1.9
Embodied Carbon, kg CO2/kg material 38
24
Embodied Energy, MJ/kg 610
170
Embodied Water, L/kg 200
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
6.1
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
63
Strength to Weight: Axial, points 48 to 60
31
Strength to Weight: Bending, points 42 to 49
41
Thermal Diffusivity, mm2/s 2.9
59
Thermal Shock Resistance, points 54 to 68
12

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0
Magnesium (Mg), % 0
91.7 to 95.4
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.010
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0
Sodium (Na), % 0 to 0.2
0
Titanium (Ti), % 87 to 91
0
Unspecified Rare Earths, % 0
0.75 to 1.8
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
3.5 to 5.0
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3