MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. ZK60A Magnesium

ASTM B817 type I belongs to the titanium alloys classification, while ZK60A magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is ZK60A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
46
Elongation at Break, % 4.0 to 13
4.5 to 9.9
Fatigue Strength, MPa 360 to 520
150 to 180
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
18
Tensile Strength: Ultimate (UTS), MPa 770 to 960
320 to 330
Tensile Strength: Yield (Proof), MPa 700 to 860
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 340
120
Melting Completion (Liquidus), °C 1600
600
Melting Onset (Solidus), °C 1550
550
Specific Heat Capacity, J/kg-K 560
960
Thermal Conductivity, W/m-K 7.1
120
Thermal Expansion, µm/m-K 9.6
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
29 to 30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.4
1.9
Embodied Carbon, kg CO2/kg material 38
23
Embodied Energy, MJ/kg 610
160
Embodied Water, L/kg 200
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
14 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
570 to 690
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
63
Strength to Weight: Axial, points 48 to 60
47 to 49
Strength to Weight: Bending, points 42 to 49
55 to 56
Thermal Diffusivity, mm2/s 2.9
66
Thermal Shock Resistance, points 54 to 68
19 to 20

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0
Magnesium (Mg), % 0
92.5 to 94.8
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0
Sodium (Na), % 0 to 0.2
0
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
4.8 to 6.2
Zirconium (Zr), % 0
0.45 to 1.0
Residuals, % 0
0 to 0.3