MakeItFrom.com
Menu (ESC)

ASTM B817 Type II vs. SAE-AISI 1008 Steel

ASTM B817 type II belongs to the titanium alloys classification, while SAE-AISI 1008 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type II and the bottom bar is SAE-AISI 1008 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 3.0 to 13
22 to 33
Fatigue Strength, MPa 390 to 530
150 to 220
Poisson's Ratio 0.32
0.29
Reduction in Area, % 4.0 to 13
50 to 63
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 900 to 960
330 to 370
Tensile Strength: Yield (Proof), MPa 780 to 900
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 350
400
Melting Completion (Liquidus), °C 1580
1470
Melting Onset (Solidus), °C 1530
1430
Specific Heat Capacity, J/kg-K 550
470
Thermal Expansion, µm/m-K 9.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 4.6
7.9
Embodied Carbon, kg CO2/kg material 40
1.4
Embodied Energy, MJ/kg 650
18
Embodied Water, L/kg 220
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 120
78 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 2890 to 3890
92 to 260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
24
Strength to Weight: Axial, points 55 to 58
12 to 13
Strength to Weight: Bending, points 45 to 47
13 to 15
Thermal Shock Resistance, points 62 to 66
10 to 12

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
0
Carbon (C), % 0 to 0.1
0 to 0.1
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0.35 to 1.0
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
99.31 to 99.7
Manganese (Mn), % 0
0.3 to 0.5
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.1 to 87.8
0
Vanadium (V), % 5.0 to 6.0
0
Residuals, % 0 to 0.4
0