MakeItFrom.com
Menu (ESC)

ASTM B817 Type II vs. SAE-AISI 1078 Steel

ASTM B817 type II belongs to the titanium alloys classification, while SAE-AISI 1078 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type II and the bottom bar is SAE-AISI 1078 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 3.0 to 13
11 to 14
Fatigue Strength, MPa 390 to 530
270 to 350
Poisson's Ratio 0.32
0.29
Reduction in Area, % 4.0 to 13
34 to 45
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 900 to 960
730 to 780
Tensile Strength: Yield (Proof), MPa 780 to 900
430 to 570

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 350
400
Melting Completion (Liquidus), °C 1580
1460
Melting Onset (Solidus), °C 1530
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Expansion, µm/m-K 9.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 4.6
7.8
Embodied Carbon, kg CO2/kg material 40
1.4
Embodied Energy, MJ/kg 650
18
Embodied Water, L/kg 220
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 120
77 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 2890 to 3890
490 to 860
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
24
Strength to Weight: Axial, points 55 to 58
26 to 28
Strength to Weight: Bending, points 45 to 47
23 to 24
Thermal Shock Resistance, points 62 to 66
25 to 26

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
0
Carbon (C), % 0 to 0.1
0.72 to 0.85
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0.35 to 1.0
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
98.5 to 99
Manganese (Mn), % 0
0.3 to 0.6
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.1 to 87.8
0
Vanadium (V), % 5.0 to 6.0
0
Residuals, % 0 to 0.4
0