MakeItFrom.com
Menu (ESC)

ASTM B817 Type II vs. C92700 Bronze

ASTM B817 type II belongs to the titanium alloys classification, while C92700 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type II and the bottom bar is C92700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 3.0 to 13
9.1
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 900 to 960
290
Tensile Strength: Yield (Proof), MPa 780 to 900
150

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 350
170
Melting Completion (Liquidus), °C 1580
980
Melting Onset (Solidus), °C 1530
840
Specific Heat Capacity, J/kg-K 550
370
Thermal Expansion, µm/m-K 9.9
18

Otherwise Unclassified Properties

Base Metal Price, % relative 37
35
Density, g/cm3 4.6
8.7
Embodied Carbon, kg CO2/kg material 40
3.6
Embodied Energy, MJ/kg 650
58
Embodied Water, L/kg 220
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 120
22
Resilience: Unit (Modulus of Resilience), kJ/m3 2890 to 3890
110
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 34
18
Strength to Weight: Axial, points 55 to 58
9.1
Strength to Weight: Bending, points 45 to 47
11
Thermal Shock Resistance, points 62 to 66
11

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0.35 to 1.0
86 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
0 to 0.2
Lead (Pb), % 0
1.0 to 2.5
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.5 to 2.5
9.0 to 11
Titanium (Ti), % 82.1 to 87.8
0
Vanadium (V), % 5.0 to 6.0
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.7