MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. 5082 Aluminum

ASTM grade HC steel belongs to the iron alloys classification, while 5082 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 6.0
1.1
Fatigue Strength, MPa 96
110 to 130
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
25
Tensile Strength: Ultimate (UTS), MPa 430
380 to 400
Tensile Strength: Yield (Proof), MPa 200
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1370
560
Specific Heat Capacity, J/kg-K 490
910
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.9
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 95
670 to 870
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
51
Strength to Weight: Axial, points 16
39 to 41
Strength to Weight: Bending, points 16
43 to 45
Thermal Diffusivity, mm2/s 4.5
54
Thermal Shock Resistance, points 14
17 to 18

Alloy Composition

Aluminum (Al), % 0
93.5 to 96
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0 to 0.15
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 61.9 to 74
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15