MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. 6023 Aluminum

ASTM grade HC steel belongs to the iron alloys classification, while 6023 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is 6023 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 6.0
11
Fatigue Strength, MPa 96
120 to 130
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 430
360
Tensile Strength: Yield (Proof), MPa 200
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1370
580
Specific Heat Capacity, J/kg-K 490
890
Thermal Conductivity, W/m-K 17
170
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 14
11
Density, g/cm3 7.6
2.8
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
38 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 95
670 to 690
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
49
Strength to Weight: Axial, points 16
35 to 36
Strength to Weight: Bending, points 16
40
Thermal Diffusivity, mm2/s 4.5
67
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 0
94 to 97.7
Bismuth (Bi), % 0
0.3 to 0.8
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
0.2 to 0.5
Iron (Fe), % 61.9 to 74
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.9
Manganese (Mn), % 0 to 1.0
0.2 to 0.6
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0.6 to 1.4
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.6 to 1.2
Residuals, % 0
0 to 0.15