MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. A206.0 Aluminum

ASTM grade HC steel belongs to the iron alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 6.0
4.2 to 10
Fatigue Strength, MPa 96
90 to 180
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 430
390 to 440
Tensile Strength: Yield (Proof), MPa 200
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
670
Melting Onset (Solidus), °C 1370
550
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
90

Otherwise Unclassified Properties

Base Metal Price, % relative 14
11
Density, g/cm3 7.6
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 95
440 to 1000
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
46
Strength to Weight: Axial, points 16
36 to 41
Strength to Weight: Bending, points 16
39 to 43
Thermal Diffusivity, mm2/s 4.5
48
Thermal Shock Resistance, points 14
17 to 19

Alloy Composition

Aluminum (Al), % 0
93.9 to 95.7
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 61.9 to 74
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.050
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15