MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. CC382H Copper-nickel

ASTM grade HC steel belongs to the iron alloys classification, while CC382H copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 6.0
20
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
53
Tensile Strength: Ultimate (UTS), MPa 430
490
Tensile Strength: Yield (Proof), MPa 200
290

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 1100
260
Melting Completion (Liquidus), °C 1410
1180
Melting Onset (Solidus), °C 1370
1120
Specific Heat Capacity, J/kg-K 490
410
Thermal Conductivity, W/m-K 17
30
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 14
41
Density, g/cm3 7.6
8.9
Embodied Carbon, kg CO2/kg material 2.8
5.2
Embodied Energy, MJ/kg 40
76
Embodied Water, L/kg 170
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
85
Resilience: Unit (Modulus of Resilience), kJ/m3 95
290
Stiffness to Weight: Axial, points 15
8.8
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 16
15
Strength to Weight: Bending, points 16
16
Thermal Diffusivity, mm2/s 4.5
8.2
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.5
0 to 0.030
Chromium (Cr), % 26 to 30
1.5 to 2.0
Copper (Cu), % 0
62.8 to 68.4
Iron (Fe), % 61.9 to 74
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
29 to 32
Phosphorus (P), % 0 to 0.040
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 2.0
0.15 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15