MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. Titanium 6-6-2

ASTM grade HC steel belongs to the iron alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 6.0
6.7 to 9.0
Fatigue Strength, MPa 96
590 to 670
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
44
Tensile Strength: Ultimate (UTS), MPa 430
1140 to 1370
Tensile Strength: Yield (Proof), MPa 200
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
310
Melting Completion (Liquidus), °C 1410
1610
Melting Onset (Solidus), °C 1370
1560
Specific Heat Capacity, J/kg-K 490
540
Thermal Conductivity, W/m-K 17
5.5
Thermal Expansion, µm/m-K 11
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 14
40
Density, g/cm3 7.6
4.8
Embodied Carbon, kg CO2/kg material 2.8
29
Embodied Energy, MJ/kg 40
470
Embodied Water, L/kg 170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
89 to 99
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
34
Strength to Weight: Axial, points 16
66 to 79
Strength to Weight: Bending, points 16
50 to 57
Thermal Diffusivity, mm2/s 4.5
2.1
Thermal Shock Resistance, points 14
75 to 90

Alloy Composition

Aluminum (Al), % 0
5.0 to 6.0
Carbon (C), % 0 to 0.5
0 to 0.050
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 61.9 to 74
0.35 to 1.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
5.0 to 6.0
Nickel (Ni), % 0 to 4.0
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Residuals, % 0
0 to 0.4