MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. C31600 Bronze

ASTM grade HC steel belongs to the iron alloys classification, while C31600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is C31600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.0
6.7 to 28
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 430
270 to 460
Tensile Strength: Yield (Proof), MPa 200
80 to 390

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
1040
Melting Onset (Solidus), °C 1370
1010
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 17
140
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
33

Otherwise Unclassified Properties

Base Metal Price, % relative 14
29
Density, g/cm3 7.6
8.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 40
43
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
30 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 95
28 to 690
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 16
8.5 to 15
Strength to Weight: Bending, points 16
11 to 15
Thermal Diffusivity, mm2/s 4.5
42
Thermal Shock Resistance, points 14
9.4 to 16

Alloy Composition

Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
87.5 to 90.5
Iron (Fe), % 61.9 to 74
0 to 0.1
Lead (Pb), % 0
1.3 to 2.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0.7 to 1.2
Phosphorus (P), % 0 to 0.040
0.040 to 0.1
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
5.2 to 10.5
Residuals, % 0
0 to 0.4