MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. C84800 Brass

ASTM grade HC steel belongs to the iron alloys classification, while C84800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is C84800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 6.0
18
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
39
Tensile Strength: Ultimate (UTS), MPa 430
230
Tensile Strength: Yield (Proof), MPa 200
100

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1100
150
Melting Completion (Liquidus), °C 1410
950
Melting Onset (Solidus), °C 1370
830
Specific Heat Capacity, J/kg-K 490
370
Thermal Conductivity, W/m-K 17
72
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 14
27
Density, g/cm3 7.6
8.6
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
46
Embodied Water, L/kg 170
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
34
Resilience: Unit (Modulus of Resilience), kJ/m3 95
53
Stiffness to Weight: Axial, points 15
6.6
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 16
7.3
Strength to Weight: Bending, points 16
9.6
Thermal Diffusivity, mm2/s 4.5
23
Thermal Shock Resistance, points 14
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
75 to 77
Iron (Fe), % 61.9 to 74
0 to 0.4
Lead (Pb), % 0
5.5 to 7.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 2.0
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.080
Tin (Sn), % 0
2.0 to 3.0
Zinc (Zn), % 0
13 to 17
Residuals, % 0
0 to 0.7