MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. C86500 Bronze

ASTM grade HC steel belongs to the iron alloys classification, while C86500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.0
25
Poisson's Ratio 0.27
0.3
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 430
530
Tensile Strength: Yield (Proof), MPa 200
190

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1410
880
Melting Onset (Solidus), °C 1370
860
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 17
86
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
25

Otherwise Unclassified Properties

Base Metal Price, % relative 14
23
Density, g/cm3 7.6
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
48
Embodied Water, L/kg 170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
110
Resilience: Unit (Modulus of Resilience), kJ/m3 95
180
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 16
19
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 4.5
28
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 61.9 to 74
0.4 to 2.0
Lead (Pb), % 0
0 to 0.4
Manganese (Mn), % 0 to 1.0
0.1 to 1.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
36 to 42
Residuals, % 0
0 to 1.0