MakeItFrom.com
Menu (ESC)

ASTM Grade HD Steel vs. EN 1.4110 Stainless Steel

Both ASTM grade HD steel and EN 1.4110 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HD steel and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.1
11 to 14
Fatigue Strength, MPa 140
250 to 730
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
76
Tensile Strength: Ultimate (UTS), MPa 590
770 to 1720
Tensile Strength: Yield (Proof), MPa 270
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 460
390
Maximum Temperature: Mechanical, °C 1100
790
Melting Completion (Liquidus), °C 1410
1440
Melting Onset (Solidus), °C 1370
1400
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 16
30
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 17
8.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.3
Embodied Energy, MJ/kg 45
33
Embodied Water, L/kg 180
110

Common Calculations

PREN (Pitting Resistance) 29
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 44
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 180
480 to 4550
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 21
28 to 62
Strength to Weight: Bending, points 20
24 to 41
Thermal Diffusivity, mm2/s 4.3
8.1
Thermal Shock Resistance, points 19
27 to 60

Alloy Composition

Carbon (C), % 0 to 0.5
0.48 to 0.6
Chromium (Cr), % 26 to 30
13 to 15
Iron (Fe), % 58.4 to 70
81.4 to 86
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0.5 to 0.8
Nickel (Ni), % 4.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Vanadium (V), % 0
0 to 0.15