MakeItFrom.com
Menu (ESC)

ASTM Grade HD Steel vs. EN 1.4903 Stainless Steel

Both ASTM grade HD steel and EN 1.4903 stainless steel are iron alloys. They have 74% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HD steel and the bottom bar is EN 1.4903 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.1
20 to 21
Fatigue Strength, MPa 140
320 to 330
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
75
Tensile Strength: Ultimate (UTS), MPa 590
670 to 680
Tensile Strength: Yield (Proof), MPa 270
500

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 460
380
Maximum Temperature: Mechanical, °C 1100
650
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 16
26
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
4.0

Otherwise Unclassified Properties

Base Metal Price, % relative 17
7.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.6
Embodied Energy, MJ/kg 45
36
Embodied Water, L/kg 180
88

Common Calculations

PREN (Pitting Resistance) 29
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 44
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
650
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.3
7.0
Thermal Shock Resistance, points 19
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.5
0.080 to 0.12
Chromium (Cr), % 26 to 30
8.0 to 9.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 58.4 to 70
87.1 to 90.5
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.5
0.85 to 1.1
Nickel (Ni), % 4.0 to 7.0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.015
Vanadium (V), % 0
0.18 to 0.25