MakeItFrom.com
Menu (ESC)

ASTM Grade HD Steel vs. EN 1.4905 Stainless Steel

Both ASTM grade HD steel and EN 1.4905 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HD steel and the bottom bar is EN 1.4905 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.1
19
Fatigue Strength, MPa 140
330
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
76
Tensile Strength: Ultimate (UTS), MPa 590
740
Tensile Strength: Yield (Proof), MPa 270
510

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 460
380
Maximum Temperature: Mechanical, °C 1100
660
Melting Completion (Liquidus), °C 1410
1480
Melting Onset (Solidus), °C 1370
1440
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 16
26
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
4.2

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 45
40
Embodied Water, L/kg 180
90

Common Calculations

PREN (Pitting Resistance) 29
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 44
130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
680
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
24
Strength to Weight: Axial, points 21
26
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 4.3
7.0
Thermal Shock Resistance, points 19
25

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Boron (B), % 0
0.00050 to 0.0050
Carbon (C), % 0 to 0.5
0.090 to 0.13
Chromium (Cr), % 26 to 30
8.5 to 9.5
Iron (Fe), % 58.4 to 70
86.2 to 88.8
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.5
0.9 to 1.1
Nickel (Ni), % 4.0 to 7.0
0.1 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.050 to 0.090
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 2.0
0.1 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25