MakeItFrom.com
Menu (ESC)

ASTM Grade HD Steel vs. CC334G Bronze

ASTM grade HD steel belongs to the iron alloys classification, while CC334G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HD steel and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 9.1
5.6
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
45
Tensile Strength: Ultimate (UTS), MPa 590
810
Tensile Strength: Yield (Proof), MPa 270
410

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 1100
240
Melting Completion (Liquidus), °C 1410
1080
Melting Onset (Solidus), °C 1370
1020
Specific Heat Capacity, J/kg-K 490
450
Thermal Conductivity, W/m-K 16
41
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 17
29
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 3.1
3.6
Embodied Energy, MJ/kg 45
59
Embodied Water, L/kg 180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44
38
Resilience: Unit (Modulus of Resilience), kJ/m3 180
710
Stiffness to Weight: Axial, points 15
8.1
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 21
28
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 4.3
11
Thermal Shock Resistance, points 19
28

Alloy Composition

Aluminum (Al), % 0
10 to 12
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
72 to 84.5
Iron (Fe), % 58.4 to 70
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 2.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 4.0 to 7.0
4.0 to 7.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.1
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5