MakeItFrom.com
Menu (ESC)

ASTM Grade HD Steel vs. Grade 35 Titanium

ASTM grade HD steel belongs to the iron alloys classification, while grade 35 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HD steel and the bottom bar is grade 35 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.1
5.6
Fatigue Strength, MPa 140
330
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
41
Tensile Strength: Ultimate (UTS), MPa 590
1000
Tensile Strength: Yield (Proof), MPa 270
630

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1410
1630
Melting Onset (Solidus), °C 1370
1580
Specific Heat Capacity, J/kg-K 490
550
Thermal Conductivity, W/m-K 16
7.4
Thermal Expansion, µm/m-K 11
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 17
37
Density, g/cm3 7.7
4.6
Embodied Carbon, kg CO2/kg material 3.1
33
Embodied Energy, MJ/kg 45
530
Embodied Water, L/kg 180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44
49
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1830
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
35
Strength to Weight: Axial, points 21
61
Strength to Weight: Bending, points 20
49
Thermal Diffusivity, mm2/s 4.3
3.0
Thermal Shock Resistance, points 19
70

Alloy Composition

Aluminum (Al), % 0
4.0 to 5.0
Carbon (C), % 0 to 0.5
0 to 0.080
Chromium (Cr), % 26 to 30
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 58.4 to 70
0.2 to 0.8
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
1.5 to 2.5
Nickel (Ni), % 4.0 to 7.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0.2 to 0.4
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
88.4 to 93
Vanadium (V), % 0
1.1 to 2.1
Residuals, % 0
0 to 0.4