MakeItFrom.com
Menu (ESC)

ASTM Grade HD Steel vs. C43000 Brass

ASTM grade HD steel belongs to the iron alloys classification, while C43000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HD steel and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.1
3.0 to 55
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 590
320 to 710
Tensile Strength: Yield (Proof), MPa 270
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
1030
Melting Onset (Solidus), °C 1370
1000
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
28

Otherwise Unclassified Properties

Base Metal Price, % relative 17
29
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 180
82 to 1350
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 21
10 to 23
Strength to Weight: Bending, points 20
12 to 20
Thermal Diffusivity, mm2/s 4.3
36
Thermal Shock Resistance, points 19
11 to 25

Alloy Composition

Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
84 to 87
Iron (Fe), % 58.4 to 70
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 4.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
1.7 to 2.7
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0
0 to 0.5