MakeItFrom.com
Menu (ESC)

ASTM Grade HD Steel vs. C69400 Brass

ASTM grade HD steel belongs to the iron alloys classification, while C69400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HD steel and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.1
17
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 590
570
Tensile Strength: Yield (Proof), MPa 270
270

Thermal Properties

Latent Heat of Fusion, J/g 310
260
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
920
Melting Onset (Solidus), °C 1370
820
Specific Heat Capacity, J/kg-K 490
410
Thermal Conductivity, W/m-K 16
26
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 17
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44
80
Resilience: Unit (Modulus of Resilience), kJ/m3 180
340
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 4.3
7.7
Thermal Shock Resistance, points 19
20

Alloy Composition

Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
80 to 83
Iron (Fe), % 58.4 to 70
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 4.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
3.5 to 4.5
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
11.5 to 16.5
Residuals, % 0
0 to 0.5