MakeItFrom.com
Menu (ESC)

ASTM Grade HD Steel vs. C85800 Brass

ASTM grade HD steel belongs to the iron alloys classification, while C85800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HD steel and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 9.1
15
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 590
380
Tensile Strength: Yield (Proof), MPa 270
210

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1410
900
Melting Onset (Solidus), °C 1370
870
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 16
84
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
22

Otherwise Unclassified Properties

Base Metal Price, % relative 17
24
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44
48
Resilience: Unit (Modulus of Resilience), kJ/m3 180
210
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 21
13
Strength to Weight: Bending, points 20
15
Thermal Diffusivity, mm2/s 4.3
27
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.55
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
57 to 69
Iron (Fe), % 58.4 to 70
0 to 0.5
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0 to 1.5
0 to 0.25
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 4.0 to 7.0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 2.0
0 to 0.25
Sulfur (S), % 0 to 0.040
0 to 0.050
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Residuals, % 0
0 to 1.3